首页> 外文OA文献 >Fixed Points of Belief Propagation -- An Analysis via Polynomial Homotopy Continuation
【2h】

Fixed Points of Belief Propagation -- An Analysis via Polynomial Homotopy Continuation

机译:信念传播的不动点 - 多项式分析   同伦延续

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Belief propagation (BP) is an iterative method to perform approximateinference on arbitrary graphical models. Whether BP converges and if thesolution is a unique fixed point depends on both the structure and theparametrization of the model. To understand this dependence it is interestingto find \emph{all} fixed points. In this work, we formulate a set of polynomialequations, the solutions of which correspond to BP fixed points. To solve sucha nonlinear system we present the numerical polynomial-homotopy-continuation(NPHC) method. Experiments on binary Ising models and on error-correcting codesshow how our method is capable of obtaining all BP fixed points. On Isingmodels with fixed parameters we show how the structure influences both thenumber of fixed points and the convergence properties. We further asses theaccuracy of the marginals and weighted combinations thereof. Weightingmarginals with their respective partition function increases the accuracy inall experiments. Contrary to the conjecture that uniqueness of BP fixed pointsimplies convergence, we find graphs for which BP fails to converge, even thougha unique fixed point exists. Moreover, we show that this fixed point gives agood approximation, and the NPHC method is able to obtain this fixed point.
机译:置信传播(BP)是对任意图形模型执行近似推断的一种迭代方法。 BP是否收敛以及解是否是唯一的固定点取决于模型的结构和参数化。要了解这种依赖性,有趣的是找到\ emph {all}固定点。在这项工作中,我们制定了一组多项式方程,其解对应于BP不动点。为了解决这种非线性系统,我们提出了数值多项式同伦连续(NPHC)方法。在二进制Ising模型和纠错代码上进行的实验表明,我们的方法如何能够获得所有BP固定点。在具有固定参数的Ising模型上,我们展示了结构如何影响固定点的数量和收敛性。我们进一步评估了边际及其加权组合的准确性。在所有实验中,对具有各自分区功能的边际进行加权可以提高准确性。与BP不动点的唯一性暗示收敛的推测相反,我们发现即使存在唯一不动点,BP也不能收敛的图。此外,我们表明该固定点给出了很好的近似值,并且NPHC方法能够获得该固定点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号